総説・解説・著書

総説

  • Counterintuitive chemoselectivity in the reduction of carbonyl compounds. *Iwasaki, T.; Nozak, K. Nat. Rev. Chem. 2024, 8, 518-534. DOI: 10.1038/s41570-024-00608-z.
  • 水素を用いた難分解性プラスチックのケミカルリサイクル. 岩﨑孝紀,高橋講平,高分子,2024, 73, 201–202.
  • 固体高分子電解質電解技術を活用した有機電解プロセス ~有機合成プロセスの「電化」に向けたキーテクノロジー~, *跡部真人, ファルマシア, 2023, 59, 810-814.
  • Chapter 4: Chemical Diversity and Functionality of Capsaicinoids. Singh, I. P.; Mase, N.; Tanwar, A. K.; Sengar, N.; Chatterjee, O., Peppers: Biological, Health and Postharvest Perspectives, CRC Press, 2024.
  • 第5章 化学物質の合成経路探索への活用事例 8節 フロー合成の反応条件最適化への機械学習の活用, 間瀬暢之, ケモインフォマティクスにおけるデータ解析の進め方と具体的応用法, 技術情報協会,  2023.
  • 【第Ⅰ編 生産】第2章 超臨界二酸化炭素を用いた可塑化重合法とポリ乳酸の合成, 間瀬暢之; 田中千秋; 根本太一,  ポリ乳酸の生産・成形加工・高機能化技術, シーエムシー出版, 2024.
  • Small Aromatics Bearing Two Darylamino Termini: HIghly Reducing Organic Photocatalysts. *Koike, T. Synlett 2024, 35, 412-418. DOI: 10.1055/a-2126-1897.
  • Acetate/Alkoxide/Halide Shuttle Systems Mediated by Lewis Acid Catalysts for Insertion Reaction of a One-Carbon Unit into Carbon–Carbon or Carbon–Halogen Bonds. *Nishimoto, Y.; *Yasuda, M. Synlett 2024, 35, 367-378. DOI: 10.1055/a-2136-3609.
  • Synthesis, Structural, and Optical Behavior of Dehydrohelicene-Containing Polycyclic Compounds. Khalid, M. I.; Salem, M. S. H.; *Takizawa, S. Molecules 202429, 296. DOI: 10.3390/molecules29020296.
  • フロー合成の魅力 ~安全・高効率なグリーンものづくりへ~ 第4回:フロー合成の未来 ~DXとの融合~.  *間瀬暢之, 和光純薬時報 2024, 92(2), 10-13.
  • フロー合成の魅力 ~安全・高効率なグリーンものづくりへ~ 第3回:フロー合成の実践 ~学術・産業への応用~.  *間瀬暢之, 和光純薬時報 2024, 92(1), 15-18.
  • フロー合成の魅力 ~安全・高効率なグリーンものづくりへ~ 第2回 フロー合成の基礎 ~要素技術と設計~. *間瀬暢之, 和光純薬時報 2023, 91(4), 17-21.
  • フロー合成の魅力 ~安全・高効率なグリーンものづくりへ~ 第1回:フロー合成の魅力 ~なぜフロー合成?~. *間瀬暢之, 和光純薬時報 2023, 91(3), 19-22.
  • 環状ペプチド天然物Asperterrestide Aの全合成と構造訂正 . *土井隆行,大澤宏祐,増田裕一 ,有機合成化学協会誌  2023, 81, 554–561. DOI: 10.5059/yukigoseikyokaishi.81.554.
  • 環状デプシペプチド天然物の全合成および構造決定. 大澤宏祐,土井隆行,月刊細胞,2023, 55, 37–40.
  • 固体高分子電解質電解技術を活用した有機電解プロセス ~有機合成プロセスの「電化」に向けたキーテクノロジー~, *跡部真人, ファルマシア, 2023, 59, 810-814.
  • The Road to Bis-periazulene (cyclohepta[def]fluorene): Realizing One of the Long-standing Dreams in Nonalternant Hydrocarbons. *Konishi, A.; Horii, K.; *Yasuda, M. J. Phys. Org. Chem. 2023, 36, e4495. DOI: 10.1002/poc.4495.
  • Bis-periazulene: Remaining Non-alternant Isomer of Pyrene. *Konishi, A.; Horii, K.; Hirose, M.; *Yasuda, M. Pure Appl. Chem. 2023, 95, 353-362. DOI: 10.1515/pac-2023-0117.
  • Recent progress in photocatalytic reactions involving the excitation of electron-primed catalysts. *Koike, T. J. Photochem. Photobio. 2023, 17, 100205. DOI: 10.1016/j.jpap.2023.100205.
  • 複雑分子構築の単純化:レジニフェラトキシンの3つの全合成経路の確立. 彦根悠人, 長友優典, *井上将行, 有機合成化学協会誌. 2023, 81, 1136-1149. DOI: 10.5059/yukigoseikyokaishi.81.1136.
  • Electrochemical Coupling Reactions Using Non-Transition Metal Mediators: Recent Advances. *Mitsudo, K.; Okumura, Y.; Sato, E.; Suga, S. Eur. J. Org. Chem. 2023, e202300835. DOI: 10.1002/ejoc.202300835.
  • Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies. *Hayashi, H.; Maeda, S.; *Mita, T. Chem. Sci. 2023, 14, 11601-11616. DOI: 10.1039/D3SC03319H.
  • Azobenzene─based Chiral Photoswitchable Catalysts. *Kondo, M.; Nakamura, K.; Sasai, H.; Takizawa, S. J. Synth. Org. Chem. Jpn. 2023, 81, 817. DOI: 10.5059/yukigoseikyokaishi.81.817.
  • Fluoroalkyl Sulfoximines for Versatile Photocatalytic Radical Fluoroalkylations. *Koike, T. Chem. Rec. 2023, 23, e202300032. DOI: 10.1002/tcr.202300032.
  • Cobalt-Catalyzed Alkynylation of Organic Compounds: Hydroalkynylation, Dehydrogenative Alkynylation, and Reductive Alkynylation. Ueda, Y.; *Tsurugi, H.; *Mashima, K. Synlett 2023, 34, 990-1000. DOI: 10.1055/a-1983-2038.
  • Toward Ab  Initio Reaction Discovery Using the Artificial Force Induced Reaction Method. Maeda, S.; Harabuchi, Y.; Hayashi, H.; *Mita, T. Annu. Rev. Phys. Chem. 2023, 74, 287-311. DOI: 10.1146/annurev-physchem-102822-101025.
  • Cross- and Multi-Coupling Reactions Using Monofluoroalkanes. *Iwasaki, T.; *Kambe, N. Chem. Rec. 2023, e202300033. DOI: 10.1002/tcr.202300033.
  • Development of Electrophilic Radical Perfluoroalkylation of Electron-Deficient Olefins. Tagami, K.; Yajima, T. Chem. Rec. 2023, e202300037. DOI: 10.1002/tcr.202300037.
  • Regioselective C–H Trifluoromethylation and Its Related Reactions of (Hetero)aromatic Compounds. *Kuninobu, Y. Chem. Rec. 2023, e202300003. DOI: 10.1002/tcr.202300003.
  • Photoswitchable Chiral Organocatalysts: Photocontrol of Enantioselective Reactions. *Kondo, M.; Nakamura, K.; Krishnan, C.G.; Sasai, H.; Takizawa, S. Chem. Rec. in press.
  • Boron Catalysis in the Transformation of Carboxylic Acids and Carboxylic Acid Derivatives. Sawamura, M.; *Shimizu, Y. Eur. J. Org. Chem. 2023, 26, e202201249. DOI: 10.1002/ejoc.202201249.
  • Recent Progress in Transition Metal Complexes Supported by Multidentate Ligands Featuring Group 13 and 14 Elements as Coordinating Atoms. Komuro, T.; *Nakajima, Y.;*Takaya, J.; *Hashimoto, H. Coord. Chem. Rev. 2022, 473, 214837. DOI: 10.1016/j.ccr.2022.214837.
  • 三中心ハロゲン結合を基盤とする分子性触媒の創成―有機配位子と非金属活性中心の組み合わせ,椴山儀恵,「ファルマシア」最前線,日本薬学会,2022;58巻10号pp. 948–953.
  • Enantioselective C–H Functionalization Using High-Valent Group 9 Metal Catalysts. *Yoshino, T. Bull. Chem. Soc. Jpn. 2022, 95, 1280-1288. DOI: 10.1246/bcsj.20220168.
  • Atroposelective synthesis of C–C axially chiral compounds via mono- and dinuclear vanadium catalysis. Kumar, A.; Sasai, H.; *Takizawa, S. Acc. Chem. Res. 2022, 55, 2949-2965, DOI: 10.1021/acs.accounts.2c00545.
  • Synthetic studies for destruxins and biological evaluation for osteoclast-like multinucleated cells: a review. Yoshida, M.; Nakagawa, H.; *Doi. T. J. Antibiot. 2022, 75, 420-431. DOI: 10.1038/s41429-022-00540-8.
  • Photoinduced Organic Reactions by Employing Pyrene Catalysts. Shiozuka, A.; *Sekine, K.; *Kuninobu, Y. Synthesis 2022, 54, 2330-2339. DOI: 10.1055/a-1739-4793.
  • C(sp3)–F Bond Transformation of Perfluoroalkyl Compounds Mediated by Visible-Light Photocatalysis: Spin-Center Shifts and Radical/Polar Crossover Processes via Anionic Intermediates. *Nishimoto, Y.; Sugihara, N.; *Yasuda, M. Synthesis 2022, 54, 2765-2777. DOI: 10.1055/a-1755-3476.
  • カーボンニュートラル実現に向けたキーテクノロジー ―固体高分子電解質電解技術を活用する有機電解プロセス―, *跡部真人, 月刊化学, 2022, 77 (10), 66-67.
  • 固体高分子膜電解によるエネルギーキャリアとしての有機ハイドライド合成と膜電解技術の応用, 光島重徳, 長澤兼作, 跡部真人, 触媒 2021, 63, 355-361.
  • 固体高分子電解質電解技術が拓く新たな有機電解合成プロセス, 跡部真人, 深澤 篤, 信田尚毅, 触媒 2021, 63, 148-152.
  • タンデム式超音波乳化法が拓く新たなポリマーナノ粒子合成, 跡部真人, 越野美春, 白石幸秀, 信田尚毅, 化学工学 2021, 84, 236-238.
  • Fluorination –A Decade of Progress (2010-2020). Suto, A.; *Yamaguchi, J. J. Synth. Org. Chem. Jpn. 2021, 79, 910-967. DOI: 10.5059/yukigoseikyokaishi.79.910.
  • Digitization of Organic Synthesis -How Synthetic Organic Chemists Use AI Technology-, S. Matsubara*, Chem. Lett. 2021, 60, 475–481. DOI: 10.1246/cl.200802

解説

  • Boron-Catalyzed α-Functionalizations of Carboxylic Acids. *Shimizu, Y.; *Kanai, M. Chem. Rec. 2023, xx, e202200273. DOI: 10.1002/tcr.202200273.
  • 機械学習は何を学んでいるか? 〜反応データベースにおける実験条件のバイアス〜, 藤波美起登, 化学, 2023, 78, 64-65.
  • 機械学習が理論化学・計算化学に与えるインパクト, 藤波美起登, 中井浩巳, 現代化学, 2022, 615, 56-57.
  • 機械学習の基礎と実践の手引き, 藤波美起登, フロンティア, 2022, 14, 107-116.
  • Creation of Transition Metal Catalysts with Substrate Recognition Moiety and Development of Regioselective and Substrate Specific Reactions. *Kuninobu, Y. J. Synth. Org. Chem. Jpn. 2022, 80, 421-430. DOI: 10.5059/yukigoseikyokaishi.80.421.

著書

  • 不斉1,4-付加反応, 不斉森田–Baylis–Hilman反応. 笹井宏明, 滝澤忍, 有機合成のための新触媒反応101, 檜山為次郎・野崎京子・中尾佳亮・中野幸司編集, 東京化学同人, 2021, pp52-55.
  • ベイズ最適化による電解・フロー精密有機合成反応条件の探索と効率化. 近藤健, 滝澤忍, 実験の自動化・自律化によるR&Dの効率化と運用方法, 技術情報協会, 2023, pp448-454.
  • Pythonで動かして始める量子化学計算,野田秀俊,コロナ社,2024.
  • 第3章 PFASの構造・特性とその挙動・影響 第2節 PFASの利用とその合成法, 矢島知子, PFAS(有機フッ素化合物)の現状および規制の影響と今後の対応, 情報機構, 2024.
  • 11章 可視光反応による有機フッ素化合物の合成, 矢島知子, CSJカレントレビュー47 フッ素の特性が織りなす分子変換・材料化学 フッ素化学の新たな飛躍に向けて, 化学同人, 2024.
  • 第2章2節 粗水素を直接活用した複素環化合物の触媒的水素化反応ー有機ハイドライド法を応用したH2精製技術ー, 森下 泰地, 橋本 大輝, 櫻羽 真熙, *星本 陽一, 水素利用技術集成 Vol.6 炭素循環社会に向けた製造・貯蔵・利用の最前線, NTS出版
  • Coupling Reactions Between sp3 Carbon Centers. *Iwasaki, T. In Comprehensive Organic Synthesis, 3rd edition; Kiruthigadevi, N.; Negi, N. Eds,; Elsevier: Oxford, in press. 10.1016/B978-0-323-96025-0.00030-2.
  • (Het)Arene/Alkane Cross-Dehydrogenative Coupling for C(sp2)—C(sp3) Bond Formation. *Iwasaki, T.; N. Kambe, N. In Science of Synthesis, Section 9, Cross-Dehydrogenative Coupling; Maiti, D. Ed.; Thieme, 2023, pp. 201-228. DOI: 10.1055/sos-SD-240-00041.
  • Transition-Metal-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions. *Iwasaki, T.; N. Kambe, N. In Organic Reactions; Montgomery, J.; Shaughnessy, K. Eds.; Wiley, 2023, Vol. 113, Chapter 1, pp. 1-456. DOI: 10.1002/0471264180.or113.01.
  • Pythonで学ぶ機械学習, 藤波美起登, 現代化学(雑誌), 東京化学同人, 2022–2023年.
  • 網羅的全合成戦略の探求―プリビレッジな構造の抽出と構築,長友優典, 化学と工業(雑誌),日本化学会,2023年; pp 584-585.
  • Chap 12 Total Syntheses of Densely Oxygenated Natural Products by Radical-Based Decarbonylative Convergent Assembly. *Nagatomo, M. In New Tide of Natural Product Chemistry; Ishikawa, H.; Takayama, H., Eds.; Springer, 2023, pp.259-273.
  • 抗がん剤タキソールの全合成――ラジカル反応を活用した新しい合成戦略とその展開,長友優典,今村祐亮,井上将行, 月刊化学(雑誌),化学同人,2023年; pp 33-37.
  • Hydrogen Bond-Accelerated meta-Selective C–H Functionalization with Iridium. *Kuninobu, Y. Handbook of CH-Functionalization. 2022, DOI: 10.1002/9783527834242.chf0102.
  • 典型元素化合物を用いた粗水素条件下における触媒的水素化反応ー有機ハイドライドを水素精製へ活用する基盤技術ー, 橋本大輝, *星本陽一, 水素の製造とその輸送, 貯蔵, 利用技術, 技術情報協会, 2022年.
  • 第5章 含フッ素材料のフォトレジストへの利用,神原將,矢島知子,フォトレジストの最先端技術,,シーエムシー出版, 2022; pp.94-100.
  • Chap 53 Synthesis of Organofluorine Compounds. Koike, T. In Handbook of Inorganic Photochemistry; Bahnemann, D. W.; Patrocinio, A. O. T., Eds.; Springer, 2022, pp 1563-1578.
  • 第6章 金属錯体/有機光触媒を内包した水溶性カプセル触媒,吉沢道人,小池隆司,水中有機合成の開発動向,シーエムシー出版,2022; pp.68-82.
  • 第25章 フローリアクターを用いる有機電解合成, 跡部真人, 信田尚毅, 有機電解合成の新潮流,シーエムシー出版, 2021; pp.309-318.
  • フローマイクロ合成の最新動向,深瀬浩一、永木愛一郎(編)、高須清誠、ファインケミカル合成プロセス、シーエムシー出版、2021, pp 102-110.
  • 第2章 有機電極反応論, 淵上寿雄, 跡部真人, 稲木信介, 有機電解合成の新潮流, シーエムシー出版, 2021; pp.13-25.
  • 第1章 有機電解合成の基礎と研究手法, 淵上寿雄, 跡部真人, 稲木信介, 有機電解合成の新潮流,シーエムシー出版, 2021; pp.3-11.
  • 有機電解反応の現状とフロー技術の利用, 跡部真人, 信田 尚毅, フローマイクロ合成の最新動向, シーエムシー出版, 2021; pp. 53-59.
  • Chap 8 Photochemical Paired Transformations.. Koike, T.; Akita, M. In Organic Redox Chemistry; Yoshida, J.; Patureau, F., Eds.; Wiley, 2021, pp 187-208.
  • Electrochemical Reductive Transformations. Atobe, M.; Fuchigami, T. In Organic Redox Chemistry; Yoshida, J.; Patureau, F., Eds.; Wiley, 2021, pp 129-152.
  • Development of Novel Organic Electrosynthetic Processes Using Electrochemical Flow Microreactor. Atobe, M.; Shida, N. In Middle Molecular Strategy, Flow Synthesis to Functional Molecules; Fukase, K.; Doi, T., Eds.; Springer Nature Singapore, 2021; pp 297-308.
TOP